MIPS Coding Snippets

Prof. James L. Frankel
Harvard University

Version of 11:54 AM 26-Oct-2021
Copyright © 2021, 2016 James L. Frankel. All rights reserved.

Loading a 32-bit constant into a register

Example loading 12345678 decimal into register St0

12345678 decimal == Oxbc614e
lui St0, Oxbc # StO <- Oxbc0000

ori St0, St0, Ox614e # StO <- Oxbc614e

The above could also be written as
lui St0, 188 # St0 <- Oxbc0000
ori St0, St0, 24910 # St0 <- Oxbc614e

The above could also be written as
lui St0, (12345678>>16) # St0 <- Oxbc0000
ori St0, StO, (12345678&0xffff) # StO <- Oxbc614e

Loading a 32-bit constant (with low half zero)
INnto a register

Example loading 19070976 decimal into register St0

19070976 decimal == 0x1230000
lui St0, 0x123 # St0 <- 0x1230000

The above could also be written as
lui St0, 291 # St0 <- 0x1230000

The above could also be written as
lui St0, (19070976>>16) # St0 <- 0x1230000

Setting a low bit in a register

Example setting bit 12 of register $t0
ori St0, St0, 0x1000 # set bit 12 in $tO

The above could also be written as
ori Sto, StO0, (1<<12) # set bit 12 in StO

Setting a high bit in a register

Example setting bit 30 of register $tO

Modifies register St1
lui St1, 0x4000 # St1 <- just bit 30 set
or Sto, St0, St1 # set bit 30 in $tO

The above could also be written as

Modifies register St1
lui St1, ((1<<30)>>16) # St <- just bit 30 set
or Sto, Sto, St1 # set bit 30 in $tO

Clearing a low bit in a register

Example clearing bit 12 of register St0

Modifies register St1

ori
nor
and

The above could also be written as

St1, SO, 0x1000

St1, St1, SO
St0, StO, St1

Modifies register St1

ori
nor
and

St1, SO, (1<<12)

St1, St1, SO
St0, StO, St1

Stl <- just bit 12 set
St1 <- ~0x1000 (just bit 12 cleared)
clear bit 12 in StO

St <- just bit 12 set
St1 <- ~0x1000 (just bit 12 cleared)
clear bit 12 in StO

Clearing a high bit in a register

Example clearing bit 30 of register St0
Modifies register St1

lui St1, 0x4000 # St1 <- just bit 30 set
nor Stl,St1, SO # St <- just bit 30 cleared
and StO, StO, St1 # clear bit 30 in StO

The above could also be written as

Modifies register St1
lui St1, ((1<<30)>>16) # St <- just bit 30 set
nor St1,St1, SO # St <- just bit 30 cleared
and StO, StO, St1 # clear bit 30 in StO

Testing a low bit in a register

Example determining the state of bit 12 of register $t0
Modifies register St1

andi St1, $t0, 0x1000 # St1 <- just bit 12 of StO
beq Sti, SO, bitlsZero # branch if bit 12 is zero
bitIsEero:

The above could also be written as

Modifies register St1
andi St1, StO, (1<<12) # St1 <- just bit 12 of StO

beq Sti, SO, bitlsZero # branch if bit 12 is zero

bitlsEero:

Testing a high bit in a register

Example determining the state of bit 30 of register St0O
Modifies register Stl

lui St1, 0x4000 # St <- just bit 30 set

and St1, $tO, St1 # Stl <- ust bit 30 of St0

beq St1, S0, bitlsZero # branch if bit 30 is zero
bitlsZero:

The above could also be written as
Modifies register Stl

lui St1, ((1<<30)>>16) # St <- just bit 30 set
and S$t1, StO, St1 # Stl <- just bit 30 of St0
beq St1, S0, bitlsZero # branch if bit 30 is zero

bitlsZero:

Moving high half of register into low half

Example copying the high half of register St0 into register St1 with zero fill
sri St1, StO, 16

Arithmetically moving high half of register
into low half

Example copying the high half of register St0 into register St1 with sign
extension
sra St1, StO, 16

Multiplying a register by a power of two

Example multiplying register St0 by 128 putting result into register St1
sl St1, St0, 7

Multiplying a register by another register

Example multiplying register St0 by register St1 putting result into register St2
mult StO, Stl # LO <- low word of product;
HI <- high word of product;
performed signed multiply
mflo St2 # St2 <- low word of product

Example multiplying register $tO by register St1 putting result into register $t2
multu StO0, Stl # LO <- low word of product;
HI <- high word of product;
performed unsigned multiply
mflo St2 # St2 <- low word of product

Comparing the value in a register to another
register (part 1 of 3)

Example determining if register StO is equal to register St1
beq StO, St1, regsAreEqual # branch if St0 == St1

regsAreEqual:

Example determining if register St0 is not equal to register Stl
bne StO0, St1, regsAreNotEqual # branch if St0 != Stl

regsAreNotEqual:

Comparing the value in a register to another
register (part 2 of 3)

Example determining if register St0 is less than register Stl (signed arith)
(St0 < St1) == ((St0-St1) < 0)
Modifies register St2

subu St2, StO, Stl # St2 <- (St0 - Stl)
bltz St2, reglsLT # branch if St0 < S$t1 (signed arith)
regléOI:T:

Example determining if register StO is less than or equal to register Stl (signed arith)
(St0 <= St1) == ((St0-St1) <=0)
Modifies register St2

subu St2, StO, Stl # St2 <- (St0 - Stl)

blez St2, reglsLE # branch if St0 <= St1 (signed arith)

reglé.I;E:

Comparing the value in a register to another
register (part 3 of 3)

Example determining if register StO is greater than register Stl (signed arith)
(St0 > St1) == ((St0-St1) > 0)
Modifies register St2

subu St2, StO, Stl # St2 <- (St0 - Stl)
bgtz St2, reglsGT # branch if St0 > St1 (signed arith)
regléo('ST:

Exﬁa)mple determining if register StO is greater than or equal to register St1 (signed
arit
(St0 >= St1) == ((St0-St1) >=0)
Modifies register St2
subu St2, StO, Stl # St2 <- (St0 - Stl)
bgez St2, reglsGE # branch if St0 >= St1 (signed arith)

regléfiE:

How to branch to a target that is too far away

Example determining if register StO is greater than register St1 (signed arith)
(St0 > St1) == ((St0-St1) > 0)

Assumes that reglsGT is near (within -32K to +32K-1 instructions of the

instruction following the “bgtz”)

Modifies register St2

subu St2, Sto, St1 # St2 <- (St0 - St1)
bgtz St2, reglsGT # branch if St0 > St (signed arith)
reglséT:

Example determining if register $tO is greater than register St1 (signed arith)
(St0 > St1) == ((St0-St1) >0

Assumes that reglsGT is far (*not® within -32K to +32K-1 instructions of the
instruction following the “bgtz”)

Modifies register St2

subu St2, St0, Stl # St2 <- (St0 - St1)
blez St2, reglsLE # branch if $t0 <= St1 (signed arith)
| reglsGT

reglsLE:

reglséT:

How to call a subroutine

Example calling subroutine to compute $a0 » Sal

ori Sa0, SO, 15 #Sa0<- 15
ori Sal, SO, 3 #Sal<-3
jal exp #Sv0<-1573

Subroutine: exp

Description: computes Sa0 raised to the Sal power by simple looping
Parameters: Sa0 is the base

Sal is the exponent

Results: SvO will be $Sa0 » Sal

Side effects: Sal, HI, LO, and Sra will be overwritten

exp: ofri SvO, SO, 1 # initial result is 1

beq Sal, SO, expZero # loop is over, exponent is now zero
expLooP: mult Sv0, Sa0 # (HI concat LO) <- running product * base

mflo Sv0 # update the running product

addi Sal, Sal, -1 # decrement the exponent

bne Sal, SO, expLoop
expZero: jr Sra

Use of Registers

* Register Szero always has the value 0. Storing a value into Szero has no effect.
* Register Sat is reserved for the assembler (for pseudo instructions)

* Registers Sv0 & Sv1 are results of subroutines (and used to eval exprs)
* Registers Sa0-Sa3 are parameters to subroutines

* Registers St0-St9 are temporary registers (not saved by subroutines)

* Registers Ss0-Ss7 are saved registers (subroutines must preserve these)
* Registers SkO & Sk1 are reserved for the OS kernel

* Register Sgp is used to point to a global data area

* Register Ssp is the stack pointer

 Register Sfp is the frame pointer

* Register Sra is the return address

Hardware Use of Registers

* Only two registers are special in the MIPS hardware architecture

* Register Szero (S0) is special because... when read, it always has the value
zero and when written, the writes have no effect

» Register Sra (the return address register, $31) is special because... the JAL
instruction always stores the return address into Sra

* The defined uses of all the other registers are just conventions for the
assembly language programmer

Reading from Memory (word)

Example loading a word from memory at address 12 past 0x10000000
into StO
Modifies register St1

lui St1, 0x1000 # St1 <- 0x10000000

lw StOo, 12(St1) # St0 <- loadWord(St1+12)

Reading from Memory (halfword)

Example loading a halfword from memory at address 12 past 0x10000000
into StO, zero extended
Modifies register Stl
lui St1, 0x1000 # St1 <- 0x10000000
lhu St0, 12(St1) # StO <- loadHalf(St1+12) (zero extended)

Example loading a halfword from memory at address 12 past 0x10000000
into StO, sigh extended
Modifies register Stl
lui St1, 0x1000 # St1 <- 0x10000000
lh St0, 12(St1) # St0 <- loadHalf(St1+12) (sign extended)

Reading from Memory (byte)

Example loading a byte from memory at address 12 past 0x10000000
into StO, zero extended
Modifies register Stl
lui St1, 0x1000 # St1 <- 0x10000000
lbu St0, 12(St1) # StO <- loadByte(St1+12) (zero extended)

Example loading a byte from memory at address 12 past 0x10000000
into StO, sigh extended
Modifies register Stl
lui St1, 0x1000 # St1 <- 0x10000000
b St0, 12(St1) # StO <- loadByte(St1+12) (sign extended)

Writing to Memory (word)

Example storing a word in $tO into memory at address 12 past 0x10000000
Modifies register St1

lui St1, 0x1000 # St1 <- 0x10000000

SW StOo, 12(St1) # storeWord(St0, St1+12)

Writing to Memory (halfword)

Example storing a halfword in the low half of $t0 into memory at
address 12 past 0x10000000
Modifies register St1

lui St1, 0x1000 # St1 <- 0x10000000

sh StOo, 12(St1) # storeHalf(St0, St1+12)

Writing to Memory (byte)

Example storing a byte in the low byte of $t0 into memory at
address 12 past 0x10000000
Modifies register St1
lui St1, 0x1000 # St1 <- 0x10000000
sb StOo, 12(St1) # storeByte(St0, St1+12)

Assembler Features

* The assembly language programmer can rely on many features of the
assembler

Trtlere is no need to use numerical memory addresses, the assembler will compute
these

There is no need to determine the numerical offset for branch instructions, the
assembler will compute these

The programmer may use expressions as operands if the assembler can compute the
value of these at assembly-time

* The operators in these expressions are C Programming Language operators
Labels may be used both for instruction addresses and for data addresses
Integers may be expressed in decimal, octal, or hexadecimal
Pound sign introduces comments

The assembler includes pseudo instructions for ease of programming (these are
labeled with a dagger in the SPIM documentation)

Assembler Directives

* Directives to the assembler begin with a period

e .text indicates that following lines are in the program/instruction section

e .text <addr> indicates that following lines are in the program/instruction section beginning at
address <addr>

» .data indicates that following lines are in the data section

» .data <addr> indicates that following lines are in the data section beginning at address <addr>

e .globl <name> indicates that <name> is known outside this module (i.e., has global linkage). <name>
m:lgtgke)ze a label defined in the module. Each program must have a single label named “main” that has global

* .byte <bl>, <b2>, ... initializes successive bytes to <b1>, <b2>, ...

* _half <h1>, <h2>, ... initializes successive halfwords to <h1>, <h2>, ...

 .word <w1>,<w2>, ... initializes successive words to <w1>, <w2>, ...

e .space<n> reserves <n> bytes of memory (uninitialized)

e .ascii <string> initializes successive bytes to the ASCII values of the characters in the string <string>

e .asciiz <string> initializes successive bytes to the ASCII values of the characters in the string <string>

followed by a null byte (i.e., a byte with the value 0)
e Strings may include backslash escape notation for special characters

The Assembler Pseudo Instruction: la

* The assembler pseudo instruction “la” stands for load address

* It puts the value of the address of a label into a specified register (i.e.,
it makes the specified register “point to” the labeled code or data)

* In essence it computes the high and low halfwords of the address and

uses “lui” and “ori” instructions to load that address into a specified
register

* |ts form is
la <destinationRegister>, <label/address>

Complete program example with a subroutine

and system calls

text
.globl main
Example calling subroutine to compute $a0 ~ $al
main: ori a0, SO, 15
ori al, S0, 3
jal exp
or s0, Sv0, SO
ori v0, SO, 4
la a0, outStr
syscall
ori gvo SO, 1
or a0, $s0, $0
syscall
ori §V0'$0'4
la a0, newlineStr
syscall
ori Svo, $0, 10
syscall

Subroutine: exp

Description: computes $a0 raised to the $al power by simple looping
Parameters: $a0 is the base
alis the exponent

Results: vO will be $a0 » Sal

Side effects: $al, HI, LO, and Sra will be overwritten
exp: ori

beq 1, $0, expZero
exploop: n]}lult Sv0, $a0 # 0HI concat LO) <- running product * base
mflo
addi al, Sal, -1
bne al S0, expLoop
expZero: jr
.data

outStr: .asciiz “The product is “
newlineStr: .asciiz “\n“

Sa0 <- 15

Sal<-3

Sv0 <- 15 A 3 (exp result)

$s0 <- exp result

SvO0 <- prmt string system call code
Sa0 -> outStr

print the output string

Sv0 <- print_int system call code
$a0 <- exp result

print the integer exp result

Sv0 <- print_string system call code
Sa0 -> newline string

print a newline

Sv0 <- exit system call code

exit

HHEHFHFETTEET

#initial resultis 1)
loop is over, exponent is now zero

update the running product
decrement the exponent

