
MIPS Coding Snippets
Prof. James L. Frankel

Harvard University

Version of 11:54 AM 26-Oct-2021
Copyright © 2021, 2016 James L. Frankel. All rights reserved.

Loading a 32-bit constant into a register

Example loading 12345678 decimal into register $t0
12345678 decimal == 0xbc614e

lui $t0, 0xbc # $t0 <- 0xbc0000
ori $t0, $t0, 0x614e # $t0 <- 0xbc614e

The above could also be written as
lui $t0, 188 # $t0 <- 0xbc0000
ori $t0, $t0, 24910 # $t0 <- 0xbc614e

The above could also be written as
lui $t0, (12345678>>16) # $t0 <- 0xbc0000
ori $t0, $t0, (12345678&0xffff) # $t0 <- 0xbc614e

2

Loading a 32-bit constant (with low half zero)
into a register

Example loading 19070976 decimal into register $t0

19070976 decimal == 0x1230000
lui $t0, 0x123 # $t0 <- 0x1230000

The above could also be written as
lui $t0, 291 # $t0 <- 0x1230000

The above could also be written as
lui $t0, (19070976>>16) # $t0 <- 0x1230000

3

Setting a low bit in a register

Example setting bit 12 of register $t0
ori $t0, $t0, 0x1000 # set bit 12 in $t0

The above could also be written as
ori $t0, $t0, (1<<12) # set bit 12 in $t0

4

Setting a high bit in a register

Example setting bit 30 of register $t0
Modifies register $t1

lui $t1, 0x4000 # $t1 <- just bit 30 set
or $t0, $t0, $t1 # set bit 30 in $t0

The above could also be written as
Modifies register $t1

lui $t1, ((1<<30)>>16) # $t1 <- just bit 30 set
or $t0, $t0, $t1 # set bit 30 in $t0

5

Clearing a low bit in a register

Example clearing bit 12 of register $t0
Modifies register $t1

ori $t1, $0, 0x1000 # $t1 <- just bit 12 set
nor $t1, $t1, $0 # $t1 <- ~0x1000 (just bit 12 cleared)
and $t0, $t0, $t1 # clear bit 12 in $t0

The above could also be written as
Modifies register $t1

ori $t1, $0, (1<<12) # $t1 <- just bit 12 set
nor $t1, $t1, $0 # $t1 <- ~0x1000 (just bit 12 cleared)
and $t0, $t0, $t1 # clear bit 12 in $t0

6

Clearing a high bit in a register

Example clearing bit 30 of register $t0
Modifies register $t1

lui $t1, 0x4000 # $t1 <- just bit 30 set
nor $t1, $t1, $0 # $t1 <- just bit 30 cleared
and $t0, $t0, $t1 # clear bit 30 in $t0

The above could also be written as
Modifies register $t1

lui $t1, ((1<<30)>>16) # $t1 <- just bit 30 set
nor $t1, $t1, $0 # $t1 <- just bit 30 cleared
and $t0, $t0, $t1 # clear bit 30 in $t0

7

Testing a low bit in a register

Example determining the state of bit 12 of register $t0
Modifies register $t1

andi $t1, $t0, 0x1000 # $t1 <- just bit 12 of $t0
beq $t1, $0, bitIsZero # branch if bit 12 is zero
…

bitIsZero:

The above could also be written as
Modifies register $t1

andi $t1, $t0, (1<<12) # $t1 <- just bit 12 of $t0
beq $t1, $0, bitIsZero # branch if bit 12 is zero
…

bitIsZero:

8

Testing a high bit in a register

Example determining the state of bit 30 of register $t0
Modifies register $t1

lui $t1, 0x4000 # $t1 <- just bit 30 set
and $t1, $t0, $t1 # $t1 <- just bit 30 of $t0
beq $t1, $0, bitIsZero # branch if bit 30 is zero
…

bitIsZero:

The above could also be written as
Modifies register $t1

lui $t1, ((1<<30)>>16) # $t1 <- just bit 30 set
and $t1, $t0, $t1 # $t1 <- just bit 30 of $t0
beq $t1, $0, bitIsZero # branch if bit 30 is zero
…

bitIsZero:

9

Moving high half of register into low half

Example copying the high half of register $t0 into register $t1 with zero fill
srl $t1, $t0, 16

10

Arithmetically moving high half of register
into low half

Example copying the high half of register $t0 into register $t1 with sign
extension

sra $t1, $t0, 16

11

Multiplying a register by a power of two

Example multiplying register $t0 by 128 putting result into register $t1
sll $t1, $t0, 7

12

Multiplying a register by another register

Example multiplying register $t0 by register $t1 putting result into register $t2
mult $t0, $t1 # LO <- low word of product;

HI <- high word of product;
performed signed multiply

mflo $t2 # $t2 <- low word of product

Example multiplying register $t0 by register $t1 putting result into register $t2
multu $t0, $t1 # LO <- low word of product;

HI <- high word of product;
performed unsigned multiply

mflo $t2 # $t2 <- low word of product

13

Comparing the value in a register to another
register (part 1 of 3)

Example determining if register $t0 is equal to register $t1
beq $t0, $t1, regsAreEqual # branch if $t0 == $t1
…

regsAreEqual:

Example determining if register $t0 is not equal to register $t1
bne $t0, $t1, regsAreNotEqual # branch if $t0 != $t1
…

regsAreNotEqual:

14

Comparing the value in a register to another
register (part 2 of 3)

Example determining if register $t0 is less than register $t1 (signed arith)
($t0 < $t1) == (($t0-$t1) < 0)
Modifies register $t2

subu $t2, $t0, $t1 # $t2 <- ($t0 - $t1)
bltz $t2, regIsLT # branch if $t0 < $t1 (signed arith)
…

regIsLT:

Example determining if register $t0 is less than or equal to register $t1 (signed arith)
($t0 <= $t1) == (($t0-$t1) <= 0)
Modifies register $t2

subu $t2, $t0, $t1 # $t2 <- ($t0 - $t1)
blez $t2, regIsLE # branch if $t0 <= $t1 (signed arith)
…

regIsLE:

15

Comparing the value in a register to another
register (part 3 of 3)

Example determining if register $t0 is greater than register $t1 (signed arith)
($t0 > $t1) == (($t0-$t1) > 0)
Modifies register $t2

subu $t2, $t0, $t1 # $t2 <- ($t0 - $t1)
bgtz $t2, regIsGT # branch if $t0 > $t1 (signed arith)
…

regIsGT:

Example determining if register $t0 is greater than or equal to register $t1 (signed
arith)
($t0 >= $t1) == (($t0-$t1) >= 0)
Modifies register $t2

subu $t2, $t0, $t1 # $t2 <- ($t0 - $t1)
bgez $t2, regIsGE # branch if $t0 >= $t1 (signed arith)
…

regIsGE:

16

How to branch to a target that is too far away

Example determining if register $t0 is greater than register $t1 (signed arith)
($t0 > $t1) == (($t0-$t1) > 0)
Assumes that regIsGT is near (within -32K to +32K-1 instructions of the
instruction following the “bgtz”)
Modifies register $t2

subu $t2, $t0, $t1 # $t2 <- ($t0 - $t1)
bgtz $t2, regIsGT # branch if $t0 > $t1 (signed arith)
…

regIsGT:

Example determining if register $t0 is greater than register $t1 (signed arith)
($t0 > $t1) == (($t0-$t1) > 0)
Assumes that regIsGT is far (*not* within -32K to +32K-1 instructions of the
instruction following the “bgtz”)
Modifies register $t2

subu $t2, $t0, $t1 # $t2 <- ($t0 - $t1)
blez $t2, regIsLE # branch if $t0 <= $t1 (signed arith)
j regIsGT

regIsLE:
…

regIsGT:

17

How to call a subroutine

Example calling subroutine to compute $a0 ^ $a1
ori $a0, $0, 15 # $a0 <- 15
ori $a1, $0, 3 # $a1 <- 3
jal exp # $v0 <- 15 ^ 3

Subroutine: exp
Description: computes $a0 raised to the $a1 power by simple looping
Parameters: $a0 is the base
$a1 is the exponent
Results: $v0 will be $a0 ^ $a1
Side effects: $a1, HI, LO, and $ra will be overwritten
exp: ori $v0, $0, 1 # initial result is 1

beq $a1, $0, expZero # loop is over, exponent is now zero
expLoop: mult $v0, $a0 # (HI concat LO) <- running product * base

mflo $v0 # update the running product
addi $a1, $a1, -1 # decrement the exponent
bne $a1, $0, expLoop

expZero: jr $ra

18

Use of Registers

• Register $zero always has the value 0. Storing a value into $zero has no effect.

• Register $at is reserved for the assembler (for pseudo instructions)

• Registers $v0 & $v1 are results of subroutines (and used to eval exprs)

• Registers $a0-$a3 are parameters to subroutines

• Registers $t0-$t9 are temporary registers (not saved by subroutines)

• Registers $s0-$s7 are saved registers (subroutines must preserve these)

• Registers $k0 & $k1 are reserved for the OS kernel

• Register $gp is used to point to a global data area

• Register $sp is the stack pointer

• Register $fp is the frame pointer

• Register $ra is the return address

19

Hardware Use of Registers

• Only two registers are special in the MIPS hardware architecture
• Register $zero ($0) is special because… when read, it always has the value

zero and when written, the writes have no effect

• Register $ra (the return address register, $31) is special because… the JAL
instruction always stores the return address into $ra

• The defined uses of all the other registers are just conventions for the
assembly language programmer

20

Reading from Memory (word)

Example loading a word from memory at address 12 past 0x10000000
into $t0
Modifies register $t1

lui $t1, 0x1000 # $t1 <- 0x10000000
lw $t0, 12($t1) # $t0 <- loadWord($t1+12)

21

Reading from Memory (halfword)

Example loading a halfword from memory at address 12 past 0x10000000
into $t0, zero extended
Modifies register $t1

lui $t1, 0x1000 # $t1 <- 0x10000000
lhu $t0, 12($t1) # $t0 <- loadHalf($t1+12) (zero extended)

Example loading a halfword from memory at address 12 past 0x10000000
into $t0, sign extended
Modifies register $t1

lui $t1, 0x1000 # $t1 <- 0x10000000
lh $t0, 12($t1) # $t0 <- loadHalf($t1+12) (sign extended)

22

Reading from Memory (byte)

Example loading a byte from memory at address 12 past 0x10000000
into $t0, zero extended
Modifies register $t1

lui $t1, 0x1000 # $t1 <- 0x10000000
lbu $t0, 12($t1) # $t0 <- loadByte($t1+12) (zero extended)

Example loading a byte from memory at address 12 past 0x10000000
into $t0, sign extended
Modifies register $t1

lui $t1, 0x1000 # $t1 <- 0x10000000
lb $t0, 12($t1) # $t0 <- loadByte($t1+12) (sign extended)

23

Writing to Memory (word)

Example storing a word in $t0 into memory at address 12 past 0x10000000
Modifies register $t1

lui $t1, 0x1000 # $t1 <- 0x10000000
sw $t0, 12($t1) # storeWord($t0, $t1+12)

24

Writing to Memory (halfword)

Example storing a halfword in the low half of $t0 into memory at
address 12 past 0x10000000
Modifies register $t1

lui $t1, 0x1000 # $t1 <- 0x10000000
sh $t0, 12($t1) # storeHalf($t0, $t1+12)

25

Writing to Memory (byte)

Example storing a byte in the low byte of $t0 into memory at
address 12 past 0x10000000
Modifies register $t1

lui $t1, 0x1000 # $t1 <- 0x10000000
sb $t0, 12($t1) # storeByte($t0, $t1+12)

26

Assembler Features

• The assembly language programmer can rely on many features of the
assembler
• There is no need to use numerical memory addresses, the assembler will compute

these
• There is no need to determine the numerical offset for branch instructions, the

assembler will compute these
• The programmer may use expressions as operands if the assembler can compute the

value of these at assembly-time
• The operators in these expressions are C Programming Language operators

• Labels may be used both for instruction addresses and for data addresses
• Integers may be expressed in decimal, octal, or hexadecimal
• Pound sign introduces comments
• The assembler includes pseudo instructions for ease of programming (these are

labeled with a dagger in the SPIM documentation)

27

Assembler Directives

• Directives to the assembler begin with a period
• .text indicates that following lines are in the program/instruction section
• .text <addr> indicates that following lines are in the program/instruction section beginning at

address <addr>
• .data indicates that following lines are in the data section
• .data <addr> indicates that following lines are in the data section beginning at address <addr>
• .globl <name> indicates that <name> is known outside this module (i.e., has global linkage). <name>

must be a label defined in the module. Each program must have a single label named “main” that has global
linkage.

• .byte <b1>, <b2>, … initializes successive bytes to <b1>, <b2>, …
• .half <h1>, <h2>, … initializes successive halfwords to <h1>, <h2>, …
• .word <w1>, <w2>, … initializes successive words to <w1>, <w2>, …
• .space <n> reserves <n> bytes of memory (uninitialized)
• .ascii <string> initializes successive bytes to the ASCII values of the characters in the string <string>
• .asciiz <string> initializes successive bytes to the ASCII values of the characters in the string <string>

followed by a null byte (i.e., a byte with the value 0)

• Strings may include backslash escape notation for special characters

28

The Assembler Pseudo Instruction: la

• The assembler pseudo instruction “la” stands for load address

• It puts the value of the address of a label into a specified register (i.e.,
it makes the specified register “point to” the labeled code or data)

• In essence it computes the high and low halfwords of the address and
uses “lui” and “ori” instructions to load that address into a specified
register

• Its form is
la <destinationRegister>, <label/address>

29

Complete program example with a subroutine
and system calls

.text

.globl main

Example calling subroutine to compute $a0 ^ $a1
main: ori $a0, $0, 15 # $a0 <- 15

ori $a1, $0, 3 # $a1 <- 3
jal exp # $v0 <- 15 ^ 3 (exp result)
or $s0, $v0, $0 # $s0 <- exp result
ori $v0, $0, 4 # $v0 <- print_string system call code
la $a0, outStr # $a0 -> outStr
syscall # print the output string
ori $v0, $0, 1 # $v0 <- print_int system call code
or $a0, $s0, $0 # $a0 <- exp result
syscall # print the integer exp result
ori $v0, $0, 4 # $v0 <- print_string system call code
la $a0, newlineStr # $a0 -> newline string
syscall # print a newline
ori $v0, $0, 10 # $v0 <- exit system call code
syscall # exit

Subroutine: exp
Description: computes $a0 raised to the $a1 power by simple looping
Parameters: $a0 is the base
$a1 is the exponent
Results: $v0 will be $a0 ^ $a1
Side effects: $a1, HI, LO, and $ra will be overwritten
exp: ori $v0, $0, 1 # initial result is 1

beq $a1, $0, expZero # loop is over, exponent is now zero
expLoop: mult $v0, $a0 # (HI concat LO) <- running product * base

mflo $v0 # update the running product
addi $a1, $a1, -1 # decrement the exponent
bne $a1, $0, expLoop

expZero: jr $ra

.data
outStr: .asciiz “The product is “
newlineStr: .asciiz “\n“

30

